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ABSTRACT

THE EFFECTS OF UPSTREAM MASS INJECTION
ON DOWNSTREAM HEAT TRANSFER

by
W. Robert Wolfram, Jr,

This study was performed in order to determine the effects of up~-
stream mass injection on downstream heat transfer in-a laminar non-
reacting boundary layer. The study differs from numerous previous
investigations in that no similarity assumptions afé'made. A numerical
technique known as the method of integral-matrix analysis is used.

This approach is a recent outgrowth of the method of integral relations.
The complete coupled set of non-reacting laminar boundary layer equations
with discontinuous mass injection was solved for this problem using the
integral-matrix techniques The effects of mass injection on heat trans-
fer to both sharp and blunt-nosed isothermal flat plates were studied
for a Mach 2 freestream. The amount of injection and the length of the
injected region were varied for each body. Heat transfer rates were
found to decrease markedly in the iﬁjected region, A sharp rise in
_heat transfer was found immediately downstream of the region of injec-~
tion followed by an asymptotic approach to the heat transfer rates
calculated for the case of no injection. An insulating effect was
found to persist for a considerable distance downstream of the injection
region. The distance required for this insulating effect to die out

was found to depend on the length of the injection region as well as the

rate of injection,
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NOMENCLATURE

Ay Ay Ay Ay = coefficients defined by equations (Lo)

Bys Bys By, Blt = coefficients defined by equations (LL)

Cis Cps 03, Ch = coefficients defined by equations (Li5)

¢ = product of density and viscosity normalized by their freestream values
Cp = heat capacity

ds d;s d, = coefficients defined by finite difference relations (3L)

D‘lé = binary diffusion coefficient

£ = stream function

g = the velocity ratio specified at a control node

h = static enthalpy

= total enthalpy defined by H, = h + u°/2

H &

t
k = thermal conductivity
Ki = mass fraction of the ith species

m = molecular weight of the mixture

i

m; = molecular weight of the ith species

xhw = @V, = mass rate of injection
N = number of nodal points across the boundary layer
Npr = Prandtl number = Cpﬂ/ k

N, = Schmidt number =u/p D,

P = dumy variable

p = static pressure

q n " local heat transfer rate for the zero injection case

= stagnation point heat transfer rate
st



G, = local wall heat transfer rate (BTU/ sec-ftz)
R = universal gas constant
r, = local radius of curvature of the surface

8 = streamwise distance measured along the body

T = static temperature
u = velocity component on the streamwise direction
v = velocity component normal to the surface

xj = mole fraction of the jth species

¥ = distance measured normal to the body

c{,, = normalizing parameter

B = pressure gradient parameter defined by equation (21)
¢ = transformed coordinate normal to the surface

H = viscosity

.= collision integral

@ = density .‘

0 = characteristic molecular diameter

$= transformed streamwise coordinate
Superscripts: ' denotes partial differentiation with respect to 4

Subscripts:
00 = boundary layer edge
i = ith chemical species

J
1

jth chemical species

1th streamwise station

L

mth iteration

=
1

=
f

nth nodal point from the surface

w = wall



I. INTRODUCTION

The following study was undertaken in order to determine the effects
of upstream mass injection on the downstream heat transfer properties
of a supersonic laminar boundary layer. High velocity lifting entry
vehicles require considerable ablation or mass injectioﬁ cooling in the
stagnation region in order to overcome the large heat transfer rates
produced by the severe thermal environment during entry. This injected
mass remains in the boundary layer as the flow accelerates around the
body. However, additional mass injection or even thermal sampling may
be taking place on the afterbody of the vehicle. Therefbre, it is
desirable to determine to what extent the insulating properties of the
upstream injection persist downstream in the boundary layer flow.

The study has further application in such problems as injection
cooling near the leading edge of high-speed airfoils, In this case
it is desirable to keep the actual region of injection small due to
structural considerations. Downstream persistence of an insulating
effect from injection would then be highly beneficial.

The laminar boundary layer with mass injection has been the subject
"of numerous investigations in the past. Most of these studies have
treated flow in the region of injection and flow over an impermeable
surface downstream from the injection rggion as two separate problems.
The solutions obtained required some type of matching of solutions at

the interface between the injection region and the downstream region.



Solutions for the injected region have usually been of the simi-
larity type. Such a solution was obtained by Low(1), who performed
a classical similarity analysis for the compressible laminar boundary
layer with continuous fluid injection. This solution has often been
cited as the "exact" solution and has usually formed the starting point
for studies of flow downstream from an injection region. However,
similarity requires the rather restrictive assumption that the rate of
coolant injection, ﬁw » be proportional to some power of the distance
from the leading edge. In this case the power was (-s). Otherwise,
boundary conditions cannot be transformed properly. Lee and Sundell(z)-
showed experimentallyvthat mw,is nearly constant with distance for the
case of ablation of Teflon from an Apollo-shaped body. This result
casts serious doubts at least on the validity of the similarity
agsumptions.,

More recently, Smith & Clutter(3) developed a finite difference
solution to the laminar boundary layer problem. Their numerical
procedure was reported to contain the capability of handling arbitrary
distributions of mass injection. However, their investigation was di=
rected more toward other aspects of the boundary layer problem and no
applications to mass transfer cooling were presented.

The downstream region has been studied mainly by use of the Karman-
Pohlhausen integral approach. Rubesin and Inouye(h) used this method
with a seventh-degree polynomial approximation to the velocity and
temperature profiles. They matched their profiles to Loﬁ‘s solution

at the interface by assuming shear stress and boundary layer thickness



to be continuous at the junction. Libby and Pallone(S) used sixth-
degree polynomials but introduced additional parameters to insure con-
tinuity of mass, momentum, and energy at the interface. The profiles
were allowed to change discontinuously at the interface but the para-
meters were not made functions of distance., The solution is, therefore,
valid only for a short distance downstream from the injected region.

(6)

Howe used a finite difference scheme in the downstream region
but again matched to Low's solution at the junction. In comparing his
results with those of Rubesin and Inouye and Libby and Pallone, he
found significant differences among the solutions., All three studied
the rise in wall bemperature along an insulated plate. Howe's results
fell in between the optimistic results of Libby and Pallone and the more
conservative findings of Rubesin and Inouye.

Chung(7) and Cresci(e) have followed similar procedures for
axisymmetric'bodies. Chung assumed seventh-degree polynomial profiles
while Cresci used exponential profiles.

Pallone(9) has also studied wall temperature rise along an insulated
plate, using Low's solution in the porous region. His analysis is
vsignificant in that it more nearly follows the method of integral
relations used in the present analysis. Instead of integrating across
the whole boundary layer, as is done in the Karman-Pohlhausen approach,
he subdivided the boundary layer into N separate strips. Integration
of the governing equations was then performed across each strip, using

a polynomial to represent the integrand over each individual strip,

This resulted in far greater accuracy than is possible with the more



gross momentum-integral method. The resulting ordinary differential
equations were integrated numerically and the results compared well
with Howe's finite difference results.

The present study differs from the previous ones in several respects.
First of all, many of the restrictive assumptions of previous investiga
tors were relaxed. No similarity was assumed for the region of injection,
thus allowing arbitrary distributions of mass injection. Mass injection
was taken to be constant over the first portion of a planar body, followed
by a region of zero injection. The complete nonsimilar, compressible
laminar boundary layer equations were solved by use of the integral-
matrix technique(10). This method is a recent outgrowth of the method
of integral relations(11). Both the injection and downstream regions
were solved together as one problem,

The effects of mass injection on heat transfer to an isothermal
plate were stﬁdied. Both sharp and blunt-nosed configurations were

considered and the resulis compared.



II. ANALYSIS

The equations that govern the physical system under consideration
are the two-dimensional, steady-state, non-reacting, laminar boundary

layer equations.

3 3 . a
Continuity: = (ew) + _:)é; () =0 1)
Streamise Momentum: ¢ g.g-.. + v _é_;_f_ + 9P _ _33_ (« %ge,) (2)
s Y 4

3 2

Normal Momentum: ( gl-; ) = «
S

. ion: o, IKi OKi - 2 K¢
Species Conservation: ey Ss tev 3y dy (e Dx aay) )
Enerey: oMy My _ 9 oCu’sz) 2T
SRR PUGE eyt = (M S5 + kg
b2 (enz dk) ()

where Ki is the mass fraction of the ith species, IHZ is the binary
diffusion coefficient, s is the mixture viscosit&, k is the thermal
conductivity, and Ht is the total enthalpy.

It should be noted at this point that thermal diffusion is
neglected and no internal generation of species is assumed. Also, as
the radius of curvature, L will always be large compared with the
boundary layer thickness, the term‘(%g)s(equation (3)) becomes approx-
imately equal to zero. Therefore, it may be concluded that there is no
normal pressure gradient, and the pressure becomes a function of
streamwise distance only. In all cases of interest to the present study
the system was assumed to be a binary mixture of 78.8% N, and 21.2% 0,

by volume.



The boundary conditions are as follows:

1. uw=0

2. Iﬁw =@V, » @ given function of s
3. 'J?W = a given function of s
4. K, = given
5. Edge conditions are specified functions of s
U(s)s Puls)s T(s), K (s)
where subscript "w' denoted the wall (i.e. y=0).
The transpo;‘t properties are treated in accordance with kinetic
thgory(12) with slight modifications reported in reference (10).
Equal diffusion coefficients are assumed with D12 given by the following

relation:

V2
-3 T (T2, 05)
=2.628 x/ -
D/Z 26 ) 0 Pa;:f Af:"

ref

CemPfec) (6)

where T is the temperature in degrees Kelvin, p is the pressure in atm.,

M

of is the molecular weight of the reference species, Upsis the charac-

teristic diameter of a molecule of the reference species (angstrom units),
and _nf:.’,',’; is the collision integral for the reference species, either

02 or N2 since the binary diffusion coefficients are assumed equal for
both species.

The viscosity is obtained from the Sutherland-ilassiljewa

approximation: 2
M= g’ A Dy (7)
h N
where /‘i = (6 IZ-%;—ES )e D/a (8)
I3
D; =/0+ /385 —== 2L 9
¢ PXiemi Dz ()

where xj = mole fraction of jth species (i # j).



The thermal conductivity, k , is treated as the sum of the mono-
tonic thermal conductivity and a contribution from the internal degrees

of freedom:

k - kmono . kfn'!‘ (,0>
mono 2 mono _ X

where k = <‘=Z/ k; D; (1)

with )7 = (15R/A M) vz).

wd D] =0+ 1065x/.385 ELL K 3)
< 23 (A

(i#J)

The contribution from the internal degrees of freedom is given by:

nt 2 nmone
‘/< = i% X¢ (k,; -k ) (14
where mono
R - i
ki-ki = PDe m (Cr —E5) (15)

The temperature dependencies of C_ , h , and entropy are obtained

from curve fits of JANAF experimental dzataz(1 3 ).
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TRANSFORMATIONS: A modified levy-Lees similarity transform is used with

non-similar terms being retained in the equations., The transformed

variables 4 and % are given by“o):

= La($)

4
—— | P(v)dy

S
§ = jé{(SM’,(S),am (s)ds

The quantity o, (%) is a stretching parameter determined during the
numerical iteration. It is used to keep the boundary layer thickness
relatively uniform in the transformed plane. This is mainly a numerical
convenience in that a uniform placement of nodal points across the
boundaxry layer can be set in advance for all problems. The parameter
oy (§) is determined by specifying the velocity ratio at a certain nodal

point in the boundary layer.

Fl, = 2%, (17)
where _5_/ = Ay Yo

A good choice has been g = 0.80 at the 5th of seven nodes.
A stream function is also defined and is given by:
?
f-f, = an [ X4
w H “e 4 (18)
[-4
Applying these transformations to equations (2), (L) and (5) yields
the results:
. ” c 'F” / 2 ()” 12

Momentum: £ £ +[__&_;.] +,B(°(H'é"“f ) (19)

- ‘3w 3F A d e
2 (f ses ~ T sms ~f T



d
where ! denotes ‘572

and WheTe € = PUSQ 4 (20)
d = dbmn Uoo
an B = 25— s (21)

The quantity B therefore is a pressure gradient parameter.

Species: £ + ¢ A/: K] =2¢ [7‘, AKL _ k! a_;_-} 22)
4 ¢
Energy: fH, + < [ ££ ,2 . Cp - A 7
=2¢[+ JHt u! a+] (23)
The boundary conditions are similarly transformed to give:
~1/ 7 ‘
-ﬁ = -— 2 2 PwU:d d?
* (2%) o B U fuo (z4)
/
Fw =0 (z5)
4
foo = o (z¢)
foo =0 (27)

The quantities Ht H

too? Kyyr 34 K, ., ave specified functions of §.

INTEGRAL MATRIX PROCEDURE: Following the method of Kendall &

Bartlett(TO) the transformed equations are put into integral matrix
form., The details of this procedure are presented only for the
momentum equation, The handling of the species concentration and energy
equations is completely anélogous and is omitted in order to avoid

needless algebraic complexity.
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The transformed momentum equation is:

£+ [ v p (o & - 57)

’ ! ” 2
2 (5355 ~ 44 -1 =) a9

The boundary lsyer is divided into N-1 strips at a given stream-
wise station s. These strips are bounded by N nodal points. In the
final numerical solution N = 7 was used. The points are designated 4,,

where n = 1 at the wall and n = N on the boundary layer edge.

Let P, represent any of the 4, TFKEESTREAM

e

£14(%a), or £111(%,), P L%
n+1 %
ls
can be related to Pn by means %3
' o
of a Taylor series expansion by WAL

———_—"5

about én :

” 2 " 3 2 e
Poer =Bt RISy ¢ RYGSET N GOT, G (g

where (g% = bu - b,

The highest order derivative of the dependent variable f which
appears in the boundary layer equations is ft'!, Therefore, the series
is truncated at the next highest derivative, f£ft1t!, The quantity fi''!

is considered to be constant between %, and %,.,.

144 14

utt - 7Cn+/ - fn
s 5t (z9)




11

Therefore the truncated Taylor series expansions for fn’ f'n, f"n

become ¢

4 4 " 3 L 3
foer = Fuv S b+ £GRT L NGO, G

5 w oz (30

4 4 " a 2 [
O R LI S CORNF RN O (a1

A

5 (32)

The foregoing is an implicit set of relations giving fn +1?
f'n + 12 f"n .12 and f"*n 47 38 functions of # . This is known
as a "spline fit" and serves the same purpose as finite difference re-
lations in usual numerical analyses. However, in this case the func-
tions join in a continuous menner at the nodal points, thus requiring
fewer nodes for the same relative accuracy. The variables H_ and Ki

t
are treated in the same mamner.

Derivatives in the streamwise direction are represented by the
conventional three-point backward difference relations:

oP
Z[B—@nf) = J"@ + d EE-—I. + Clz EC-Z (33)

where

dO = 2(1 Af..’ + 1A1—2>/(£A/!—‘,QAJ€"Z)

~2 (282-2)" (e de~1 2-184-2) (34)

o
0

CIZ = 2 (gAg-,)/(,eAz-z g-,A,q..p_)
where P1 is any dependent variable and P1-1 is the variable evaluated

at the previous streamwise station.

,eAz—/ = bn (5..78,.,) (35)
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The momentum equation can now be integrated at constant ¢ across

each strip to obtain equations of the form:

fff”d% +["“n, +,B°«,,f aé«ﬁffaé

(D35 (v of ) ”
n_'[(fa : - F 2 d aj;jﬁ; e

4]
0 :
The integral J f£5 d5% can be integrated by parts to give:
net

an"& = [H'J:., - _f"Jf”'c/‘z (37)

The remaining integral is expanded in a Taylor series,
”n

(sPae = sPse (4P

h-1

'F”P) (S‘?.)

+(—FHIP+27C”P+'f' )CS;L)
(P n s P e s 5P £1P) A
+ (4 -F”IIPI/I.‘. é'ﬁ,”’ 4“F””P) (;4)

wit . (Jé) an_w (54
(108l P+ 105 P") Zi + 204, F (————) (38)
where P may be any dependent var:v_able. The same truncation criterion
has been applied as in previous Taylor series expansions., Using the
formula (38) with P =

ft, the integral becomes :

[ $7d = £ A+ £ A, + £a 4 £ A
n-~t

(39)
where .
_ ’ P e S4) m Sk 2
Al = Sé (4n - _£'\ 5‘22' + 'Fn —_g- + ‘.Fu-{ Cz_:‘,)
= - 2 [ 4. Y “t n(Sé)
Az (5’1)[—2-”7(,.?4‘-;

m C;S_i. ] (40)
~ /ZO
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(51?) [L_jcnt 15k rl/(Sé) +7cn':" 5(5{)]

720 " 420 S o4

40)
= 314, 54 “ 5¢54)° “ 5e)" (
(87 [ 25 - £ *hoSor tha SE

Now consider the integrals of the streamwise derivatives using

the finite difference approximation.

zn_Jl(f’j—z—f‘—; -2 e = f&(a £'r d$as + dy 50 )d

- fjc”(‘,:,,g+ di o+ dyFer) b (#1)

Integrating the second integral on the right hand side by parts

lds: " ” n s 2
vk f‘F (ode +di 55y td, $42)db = Zdaf 5 d4

+Jfa‘ fo, dk + d, fﬂ._ £db & 4, j¥ 5;“4‘2

n-j

+ Clz_f’ Saaf 't [da 55+ d, 50, 5+ d, S5 a2

These integrals are of the same form as equation (38) znd can be

expanded in a Taylor series in like manner with the result:

Zf ['f &A? - ’;jf?]"“‘ = [d"';l’(l*‘Jlfz—l":'+‘=’z§fz—z§,]ni:

n-t
"t

+ZCJ,[’§:A -Y-AZ+.FA3+ ,‘,lAq]
+2[58 + 55 + 578, + £, 8,] (43

where B, = SQ[C - C, .5_% + Cy (S‘a) +Cq<$é)

B,= - [ S4 4 o 1(SE) D%
< (SéJ 2 Cz 3 C3 __‘ I._ 2z 4+ 4 (3o> 644)
$3)° 5 -G M4 1(s4)* 5(s8)*
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5 [< 54 5¢s4)” (s4)°
54 (Sé) [2_4 2 %o + C3 SO+ + Cq. 252 (4'4')
and ; ,
C) = d' -Fl—l)n -+ d?. § -2, 1

p
C j F o
2 = I ‘e-tn * "’2. 'f_e-z_) "

”e
C3 - dl -f"e_l)" -+ ‘Jz -Flln

—Z)”

(45)

e

L-1,n- + C‘?_ ¥‘e-z)n-—l

Finally, a similar procedure applied to the third streamwise

integral yields: " 1% J G o
2[* Hdb = + S dgy +d, _
neil d»gﬂ‘ f ? (da O(H 2 et X

[$4 + 4 A + 4745 + 5" ] s6)

It remains to evaluate f ng o%. This can be done by approximating %;
as a cubic between n-1 and ”r;.l The four coefficients are evaluated by
matching the cubic approximation to the value of %2. and ( fg—)’at
adjacent ﬁodal points, The function can then be integrated exactly

across the strip to give:

n ’ ’ 2
_Fg — _@g _g-_.; _& eo Pn — ﬂ:o eh—l C Sé)
‘ e J% - e” + e”_‘ ) 2 + eﬂ e:“ /2_ (4-7)
“—

This approximation will not be guite as accurate as the preceding ones

since the derivatives are not necessarily continuous at each node.
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Substituting the previously derived formulas into the momentum

equation yields:

[ 5 (Urd) s + difs +4, 42_2)]:_‘
+ Bty [(%f - e,,_,) X4 ?w (’n ”_,) (58)°

- (H— B+, - T Aney o{"‘ a2 d”l'z))([‘ﬁ: A+ ’F: Ay + 'fnmAs
L)

td A -2 (4 8+ £ B + £78 + £58,]=0  @4e

The real power of the integral-matrix method comes from the fact
that integrals of functions rather than the functions themselves and
their derivatives are approximated. Since integrals tend to be much
smoother functions, the appro;d.mationé give much more accurate results

than can be attained by approximating the functions directly.
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MATRIX SOLUTIONS PROCEDURE: A completely analogous procedure is applied

to the species conservation and energy equations. The resulting matrix
of equations contains 3(N-1) conservation equations over the N-1 intervals,
7(N=1) Taylor series expansions, 10 boundary conditions? and the ofy
constraint. These contain 10 N + 1 varishles, i.e., the primary variables
£, Ht’ and Ki and their derivatives at each nodal point and «, . These
equations are solved through use of a generalized Newton-Raphson
iteration procedure.

This can best be illustrated for the arbitrary functions F1 and F2.
Suppose F, (x, y) and Fz(x, y) are complicated functions of x and y.

Further suppose X, ¥ represent the solution to the equations F‘l = 0,

F2 » O, One can expand the functions in a Taylor series to first order
terms.
- - - QE(X.«,Ym) - aF X e, Yo
FL(2,9) =0 = F () + (%= xm) To5200 4 (7o) TG0

(49)
R(z9) =0 = R (Xuay Yon) + (X = Xoma) é&_____gx...,y,.) + (¥ - Yom) ‘L’L’;“"Z’-“l
X 7

where X s ¥, are the values of x and y after the mth iteration. If

X, ¥ are replaced by X412 Tpeps the equations (L49) yield:

A Xm %‘EL’M + Ay"‘ QFI }m = ~F1-

—.5-7;- m (50)
Axw S ) 4oav, 28] - g
ox lm T Yo ‘;‘;' - 2

where
Axm = XM +1 - Xm

AYm = Ym+r = Y¥m

and the subscript m denotes the quantity evaluated at X Ve
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In matrix notation,

punes -y p

.é..ﬁ) ‘lﬁ-_} AX | r-—F ]
ox 1, Y ™~ m
) - (51)
JF 95]
—— —— A m "F
dX L 3Y I Y Zm

Notice that the coefficient matrix and the right hand side are
functions of X3 T only, Therefore,oxm,aym can be calculated in terms

of F‘1 and F2 and their derivatives evaluated at Xp? Tpe

-

- -1 - r~ -
3F, L) -F,
= x (52)
JIF, of } -F
Yom L) 2 | .
A QX }M S)’ M_J z

The quantities Axm,Aym represent corrections to be added to X Ty

to give new values of the dependent variables x A solution

+17 me1®
is obtained by guessing Xy Tqo calculating the corrections, obtaining
Xos Fp» etc. The procedure continues until F1 and F2 approach zero or
until the corrections become arbitrarily small depending on accuracy
requirements,

Obviously this procedure may be extended to any number of variables

and ecuations., This has been done in the present study with excellent

results.



18

The linearized momentum equation becomes:

c$” a$” ”
[:(: —_?-;:'t“A(-'-é:(-) ((/+J)'F+GI'F‘;+¢J{‘22)A‘;

+ £ Aa){lf]n_’ + By [(%‘:” a‘_l>é'é +(‘a°°e*‘- eﬂﬁ")“'/‘)]aw

ot P Sh $4 P
oty Lo ’2‘(/*—.;%;)Aef‘ - Bely €°° S"‘(/-ﬁ@'—-)ae.-,

3 O

z
2 5 ($4)/ Ael :
+ A (A% TL) = 2[4+ d - detea trcla],
"= L)

[A,A-Fn' + AZA-F,:' + A A:&m + A,A—F:',,

' o ey, , +d, o ’ “ w ot
- £-2
( =5 )[{”A, + £ A, + £ Ay + L) A4}AO(H

- Z[B,A-F,. + B, Af. + B;5 A% + > d*f:,_,] = ~@rror (53)

The quantity "error® is simply the momentum equation (48) evaluated
after the mth iteration. Similar expressibns may be derived fér the
species and energy equations.

The solution for this set of eéuations has been programmed for
digital compﬁtations. Convergence has been very rapid, usually in
three to four iterations for the first streamwise station. Downstream
stations converge in one or two iterations since the upstream solution
is used as a first guess for the next point dowmstream. An entire
case including discontinuous mass injection is routinely solved for
twenty streamwise stations and seven nodal points in approximately one

and one half minutes on a Univac 1108 computer,
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ITIT. RESULTS AND DISCUSSION

Calculations have been performed for several planar bodies with air
into air injection. Plates of one and five-foot lengths with both
sharp and blunt leading edges have been considered. Freestream conditions
were held constant for all cases with Mg= 2.0, Py = 0428 atm., and
T = 112°R. Furthermore, only isothermal surfaces at 750°R were
considered. Graphs are plotted with ﬁw/ést as the ordinate, where éw
is the local heat transfer rate at the wall while qst corresponds to
the heat transfer at the stagnation point for the case of no injection.-
In the cases of plates with sharp leading edges, qst is the stagnation
point heat transfer for a geometrically similar body with a blunt leading
edge. The abscissa is the distance from the leading edge of the plate.

Figures 1, 2, and 3 present the results for a one-f&ot plate with
a sharp leading edge. In each case, the injection is distributed over
the first 10, 20 and LO% of the plate length while holding the total
mass of injectant constant. It is observed that increasing the total
mass of coolant injected in successive cases increases the magnitude
of the cooling effect but leaves the shape of the curves relatively
unchanged.

In the injection region, the heat transfer is observed to decrease
relative to the no injection case as the distance from the leading
edge decreases. This is followed by a sharp rise in heat transfer
immediately downstream from the point where injection stops. Finally,
the curve approaches the no injection heat transfer rate asymptobtically

at larger distances downstream from where injection stops.
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The mathematical model actually predicts a discontinuous jump in heat
transfer at the termination of injection., This is due to the fact that
no interpal heat conduction is permitted in the isothermal wall. In
reality, such conduction would occur and the wall could not be held
exactly at a constant temperature. The curves have been drawn smoothly
to a cusp as a compromise at this point.

It can be observed that the length needed for recovery to the
zero injection heat transfer rate depends on fhe length of the injection
region as well as the coolant injection rate. As the length of the
injection region increases, so the distance reqﬁired for recovery
increases, The physical reasoning behind this fact is felt to be as
follows; the persistence of any insulating effect downstream from in-
Jjection is due to the presence of extra mass in the boundary layer.
This mass causes both a thickening of the boundary layer and an
increase in the total heat capacity of the boundary layer. Further-
more, the boundary layer naturally grows with distance from the leading
edge at a rate roughly proportional to ;% where x is the distance from
the leading edge., Thus, at points downstream from injection cutoff, the
boundary layer will naturally be thicker and grow more slowly than at
points upstream. Therefore, the extra thickening due to injection dies
out more slowly at downstream points than at points near the leading
edge. In this way, the heat blockage due to injection can persist for

greater distances when the injection region is longer.

Figures L, 5, and 6 present similar results for a five-foot plate.

Comparison of results for the one and five-foot plates shows the lack
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of any direct scaling. This is due to the highly nonlinear equations
that describe the system. The boundary layer thickness does not scale
directly with the geometric dimensions. Thus the five-fcot plate is more
strongly affected by proportionately equal mass injection than is the
one-foot plate. Figure 7 presents the same results as Figure 6 but in
the form of a ratio of heat transfer with injection to heat transfer with
no injection.
Figures 8 and 9 show typical velocity and temperature profiles.
The profiles in the injection region show a basic difference from those
downstream in that the injection region profiles exhibit a reverse
curvature near the wall. Injection rates large enough to cause negative
heat transfer rates usually caused the numerical solution to become
unstéble as profiles became nearly verﬁical at the wall. The actual
prediction of boundary layer blowoff is not possible though since one
of the basic assumptions of the laminar boundéry'layer equations is
violated under blowoff conditions. The profiles recover their
characteristic laminar shape a short distance downstream from the'end
of injection as the slow injected air is accelerated in the boundary layer.
Figures 10 and 12 show heat transfer rates over the leading edge
of one and five-foot bluﬁt plates. The pressure distribution over the
leading edge was taken from the experimental resulis of Gowen and
Perkins(1h). Injection was limited to the first 22%? of the circular
arc. The qualitative nature of the results is the same as the sharp
plate cases. The increase in heat transfer over the stagﬁation heat

transfer at about 7%? has been observed experimentally by RoSe, et. al.(15)
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This initial rise may be due to the high initial acceleration of the
flow away from the stagnation point. This causes an actual thinning of
the boundary layer for a short distance downstream.

The abrupt change in slope at 15o is more difficult to explain.

It is not ceriain if this is a physical phenomenon or a numerical
instability. The solution is very sensitive to the pressure gradient
parameter in this region,

Figures 11 and 13 show the downstream effects of stagnation point
heat transfer., In Figures 1l and 15, the injection region extends over -
750 of the radius. The results are qualitatively the same as before
though the magnitude of the effect is much larger. At the end of the
plate, the heat transfer is still about 18% lower than the zero injection

case as shown in Figure 16.
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IV. CONCLUSIONS

The effect of upstream mass injection on dowmstream heat transfer
in a laminar boundary layer has been investigated for supersonic flow
over flat plates with both sharp and blunt leading edges. The complete
set of nonsimilar boundary layer equations was solved using the integral
matrix technigue. In cases with large mass injecti;m rates, an insulating
effect has been found to persist for a considerable distance downstream
from injection cutoff. Furthermore, the length of the injection region
has also been found to have a substential effect on the distance required
for the heat blockage effects due to injection to die out. For a given
total coolant mass, longer injection regions were found to require pro=-
portionally 1onge1; distances for the local heat transfer rate to approach

a given percentage of the local zero injection heat transfer rate.
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